
52 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

A Performance Study on a Multiagent
E-Scheduling and Coordination Framework

for Maintenance Networks
Feng Zhang, Eugene Santos, Jr., Senior Member, IEEE, and Peter B. Luh, Fellow, IEEE

Abstract—Many maintenance networks as well as supply net-
works and virtual enterprises consist of multiple organizations. A
common problem arising in these different domains is multiorga-
nization scheduling and coordination. The traditional centralized
methods are not appropriate because of the existence of private
information and decision-making authorities at different organiza-
tions. Although many distributed mechanisms have been presented
for supply networks and virtual enterprises, they may not be effec-
tive for maintenance networks because of the difficulties of schedul-
ing the tightly related maintenance operations and handling the
massive uncertainties involved. These difficulties as well as the het-
erogeneity of the distributed environment make it challenging to
develop an efficient framework for maintenance networks that can
obtain a high-quality solution under different conditions, sched-
ule in a timely manner, solve large-scale problems, and so on. In
this paper, a price-based multiagent scheduling and coordination
framework for maintenance networks is explored, and a systematic
experimental study is carried out to evaluate the effects of different
factors on its performance. The results show that the framework is
able to overcome these difficulties and could be a step toward the
next generation of e-scheduling for maintenance networks.

Index Terms—Lagrangian relaxation, maintenance networks,
multiagent, multiorganization scheduling and coordination.

I. INTRODUCTION

A SSET MAINTENANCE is needed almost everywhere,
from everyday life to production and service industries.

The reason is that the assets, such as automobiles, jet engines
of airlines, and generators of electric utilities, become worn out
over time. The role of maintenance networks is to conduct a re-
manufacturing process in which the worn-out assets are restored
to a like-new condition through a series of disassembly, cleaning,
repair, and assembly operations with the infusion of new parts
as necessary. Similar to supply networks and virtual enterprises,
many maintenance networks consist of multiple organizations,
including overhaul centers (disassembling the worn-out assets
into parts for repair and reassembling the parts after repair),
repair shops (repairing the parts), warehouses of rotable inven-
tory (storing the parts usable by multiple assets), spare part

Manuscript received March 28, 2005; revised August 9, 2005. This work
was supported in part by the National Science Foundation under Grant DMI-
0223443. This paper was recommended by Associate Editor R. Brennan.

F. Zhang is with the Department of Computer Science and Engineering, Uni-
versity of Connecticut, Storrs, CT 06269 USA (e-mail: fzhang@cse.uconn.edu).

E. Santos is with the Thayer School of Engineering, Dartmouth College,
Hanover, NH 03755 USA (e-mail: Eugene.Santos.Jr@dartmouth.edu).

P. B. Luh is with the Department of Electrical and Computer Engineering,
University of Connecticut, Storrs, CT 06269 USA, and also with the Center
for Intelligent and Networked Systems, Department of Automation, Tsinghua
University, Beijing 100084, China (e-mail: luh@engr.uconn.edu).

Digital Object Identifier 10.1109/TSMCC.2006.876057

Fig. 1. Maintenance process illustration.

distributors, and manufacturers. In this paper, the focus is on
maintenance of jet engines, but the work can also be applied
to other asset maintenance networks. A simplified asset main-
tenance process is shown in Fig. 1. The worn-out assets with
various priorities arrive at the overhaul center and are disassem-
bled into serial-number-specific parts (required to be assembled
into the original assets they belong to) and rotable parts (sat-
isfying certain qualification for general use). After inspection,
good parts are ready for reassembly, while the repairable parts
are delivered to the repair shop and the remaining parts are
scrapped. For simplicity, scrapping a part is supposed to trigger
the ordering of a new part with an uncertain lead time. Hence,
the warehouse of rotable inventory, which stores good as well
as repaired rotable parts, has more or less a constant number of
rotable parts over time. Since repair of rotable parts may take a
long time, it is important to have some extra rotable parts ini-
tially (i.e., a small nonzero initial inventory level) for reducing
asset turnaround times without incurring a high inventory cost.
In the view that ordering a new part can be modeled similarly
as a repair operation, it is assumed here that all the parts can
be repaired. Assembly can start when the required parts are
ready. The multiorganization maintenance scheduling problem
is to find a scheduling policy to arrange the asset overhaul and
part repair operations with the objective of minimizing mean
asset turnaround time and mean inventory cost (INVC), sub-
ject to intraorganization constraints such as resource capacity
constraints and interorganization constraints such as disassem-
bly/repair precedence constraints [1].

The multiorganization maintenance scheduling and
coordination problem can hardly be solved optimally since
scheduling in general is NP-hard. The goal, therefore, is to
identify an approach that can obtain a nearly optimal solution
efficiently. The following difficulties, however, make the
maintenance scheduling problem more difficult to solve. First,
the maintenance processes are generally characterized by
massive uncertainties, including the uncertain asset arrivals
and operation processing times. These uncertainties can lead
to unpredictable asset turnaround times. Furthermore, the large

1094-6977/$25.00 © 2007 IEEE

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 53

number of maintenance operations are tightly related because
most of the repaired parts (excluding parts in the warehouses of
rotable inventory) have to be assembled back into assets. Such
tight relations make it difficult for the organizations with their
own sensitive information and decision-making authorities to
coordinate with each other for finding a high-quality solution.
Finally, the computing resources of the organizations are
generally connected through the Internet. The Internet, with
various processor speeds and communication delays, imposes
restrictions on implementing multiorganization scheduling and
coordination. For example, a synchronous coordination scheme
will be either slow or hardly scalable because of its potentially
high-synchronization overhead.

To overcome the difficulties, a price-based scheduling
method, which considers the massive uncertainties involved,
was presented in [1]. Its key idea is decomposition and coordi-
nation in that it employs Lagrangian relaxation to decompose the
original problem into a set of subproblems, which are solved by
using stochastic dynamic programming given the current prices
(i.e., the Lagrange multipliers). With the current subproblem
solutions available, the prices are updated at the upper level
by using a surrogate subgradient method: increase prices if the
corresponding constraints are violated, and reduce prices other-
wise. Under the new prices, the previous solutions may not be
cost effective, and new solutions need to be computed. Through
iterative updating of both the prices and subproblem solutions,
the original problem can be solved. The method was shown to
be nearly optimal using a centralized setting. A challenge of ap-
plying the method is how to efficiently deploy it in a distributed
environment while facilitating organization autonomy. Efficient
deployment means that the performance of the distributed ap-
proach should be close to that of the centralized implementation.
Since many factors may affect its performance, it is essential to
systematically show how it works in a distributed environment
under different conditions, such as with sufficient or insuffi-
cient resources, nonzero or zero initial inventory level, certain
or uncertain information, etc.

In this paper, a multiagent scheduling and coordination frame-
work built on the price-based scheduling method is developed
to solve the multiorganization maintenance scheduling problem.
The use of agents makes it possible to protect private informa-
tion and respect the decision-making authorities of the organi-
zations. Our first step is to decompose the problem into sev-
eral organization-level problems. Because of complexity, each
organization-level problem is further decomposed into smaller
asset-level/part-level subproblems. Next, an agent is associated
with each individual organization, asset, and part to solve the
corresponding subproblem. Each agent will communicate with
the relevant agents for exchanging nonprivate information, in-
cluding subproblem solution and new prices. While the frame-
work facilitates organization autonomy, is it efficient? Specif-
ically, can the framework find a high-quality solution under
different conditions? Can it schedule in a timely manner? Is the
framework scalable?

To answer the above-mentioned questions, a systematic ex-
perimental study is carried out by evaluating the impact of se-
lected factors on the performance of the agent framework.

1) A solution framework factor is selected to examine
whether the performance of the agent scheduling frame-
work can approach that of the centralized implementation
or not. Moreover, the following four factors that reflect the
different conditions arising in maintenance scheduling are
chosen.

a) Initial inventory relative level and holding cost are
the two factors related to rotable inventory manage-
ment. Initial inventory relative level, a ratio of initial
inventory level to the total number of worn-out as-
sets, is used to reflect the conditions with nonempty
or empty initial inventory and holding cost used to
reflect the conditions with high or low inventory
management cost.

b) Targeted utilization of resources of a maintenance
resource type, an estimated ratio of their busy time
to their total available time, is used to reflect the
conditions with sufficient or insufficient resources.

c) Uncertainty level is used to capture the uncertain
asset arrivals and operation processing times.

2) To determine the timeliness of scheduling in a distributed
environment, two factors, processor speed and communi-
cation delay, are selected.

3) To examine whether the framework is scalable, the number
of assets is varied to reflect different problem scales.

Two orthogonal arrays are applied to systematically conduct the
experiments based on the selected factors and reduce the total ex-
perimental cost. In the following, a literature review is first given.
A brief presentation of the problem formulation and the price-
based scheduling method follows. A multiagent e-scheduling
and coordination framework is described in Section IV. In Sec-
tion V, the experimental design is presented in detail. The ex-
perimental results in Section VI show that our framework is
able to overcome the major difficulties. Built on the price-based
scheduling method, it can obtain a high-quality solution quickly
in most cases, even for large-scale problems. More importantly,
relations between the selected factors and the performance mea-
sures are drawn from the results. These results can provide
organizations with guidance on setting up a suitable amount
of resources and initial inventory level. From these results, it
is concluded that the framework performs well under the dif-
ferent conditions in a distributed environment and could be a
step toward the next generation of e-scheduling for maintenance
networks.

II. RELATED WORK

Remanufacturing and the associated repairable inventory the-
ory have been summarized in [2] and [3]. It was concluded that
a specifically designed framework and the corresponding mod-
els were lacking for the production planning and control of
remanufacturing systems. In addition, a critical feature of re-
manufacturing, i.e., the presence of rotable inventory, has not
been well addressed, although the value of rotable inventory
to coordinate material flows has been identified [4]. In the past,
excessive preventive maintenance has been mainly used to max-
imize asset availability by industries such as the power indus-
try. The downside of excessive maintenance is unnecessary and

54 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

increased maintenance cost. To reduce the cost while maximiz-
ing asset availability, condition-based maintenance and repair
has emerged [5], [6], which can often detect the potential prob-
lems early based on the historic asset condition information so
that the necessary maintenance can be done less expensively.
While the issues of collecting and using condition information
have been addressed by the current generation of e-scheduling
frameworks, organization autonomy and performance optimiza-
tion have not received enough attention. Although the work in
supply networks [7], [8] and virtual enterprises [9] generally
consider organization autonomy, they may not be effective for
maintenance networks because of the tightly related mainte-
nance operations and the massive uncertainties involved. In our
view, the next generation of e-scheduling frameworks will not
only seek the needed information actively, but also optimize
performance actively while facilitating autonomy.

Multiagent systems (MASs) have been studied intensively to
tackle many complex and distributed application domains, such
as e-commerce [10], logistics management [11], weather fore-
casting [12], and network management [13]. Generally, a MAS
consists of a set of software agents that operate continuously and
autonomously with their own threads of control in a distributed
environment. These agents try to achieve their goals in an intel-
ligent fashion by planning and targeting the best action in a dy-
namic environment. They can either work on their own or coop-
erate with each other. By employing multiple agents, MASs can
achieve distributed decision-making and site autonomy, support
complicated cooperation among the different entities, provide
platforms for deploying the distributed scheduling methods, and
efficiently utilize the available distributed computing resources.
Of course, there are still several concerns currently on using
MASs, such as malicious agents, interoperability between two
different agent platforms, and lacking of inherent methodolo-
gies for designing and developing MASs. But, with more and
more work focusing on these concerns, it is expected that MASs
will be widely used.

A variety of agent-based coordination models have been pre-
sented in the past [10], [14]. Some models are based on the
contract net protocol [9], [15], [16], which is simple but not
good for iterative optimization in the view that it is very diffi-
cult to change the commitments made previously, while several
other models, such as generalized partial global planning [17],
distribute planning capabilities to all the agents and employ an
extendable set of coordination mechanisms for more generic
applicability. In the case of unreliable and low-bandwidth com-
munication, a coordination protocol was presented in [18] to
allow the agents to choose actions locally based on the predeter-
mined strategies, which can be decided offline or formed during
periods of full communication. This protocol may not be feasi-
ble for maintenance networks because it is often hard to identify
the effective strategies beforehand in maintenance scheduling.
A rule-based coordination infrastructure was presented in [9]
for virtual enterprise systems, and information resource hetero-
geneity was addressed while impact of heterogeneous processor
speeds and communication delays on system performance was
not. Several approaches investigated optimal scheduling and
coordination in different domains [7].

MASs have also been applied in solving maintenance prob-
lems [6], [19], [20]. A multiagent framework was developed
in [19] based on the RETSINA agent architecture. In this frame-
work, the role of the agents is to search for information that can
assist the mechanics and engineers to identify the problems and
select appropriate repair methods in a short time. A multiagent
scheduling model based on mixed-integer programming was
presented in [20] to solve a deterministic power equipment main-
tenance scheduling problem with the objective of minimizing
maintenance cost and revenue loss.

In view of the major difficulties encountered in developing
the next generation of e-scheduling for maintenance networks,
few of the past work are feasible. Therefore, new models need
to be developed to overcome the difficulties. In Section III, the
problem formulation and the price-based scheduling method are
briefly described. After that, a price-based multiagent schedul-
ing and coordination framework, which could be a step toward
the next generation of e-scheduling for maintenance networks,
is presented.

III. PROBLEM FORMULATION AND PRICE-BASED

SCHEDULING METHOD

This section briefly summarizes the problem formulation and
solution methodology presented in [1]. For the simplicity of
the discussions in Sections III-A and B, assume one overhaul
center, one repair shop, and one warehouse of rotable inventory.
It is straightforward to extend the formulation to the case with
multiple overhaul centers, repair shops, and/or warehouses of
rotable inventory.

A. Problem Formulation

The multiorganization maintenance scheduling problem is
subject to two categories of constraints.

1) Intraorganization constraints: The major constraints for
the overhaul center or the repair shop include the
following.

a) Operation processing constraints: Each mainte-
nance operation has to be processed by some re-
sources for some amount of time.

b) Precedence constraints between adjacent opera-
tions: Each succeeding operation cannot be started
until the current operation is completed plus a re-
quired timeout (e.g., transportation time).

c) Arrival time constraints: Disassembly of each asset
can be started no earlier than its arrival plus a re-
quired wait time. These constraints are considered
for the overhaul center.

d) Expected resource capacity constraints: The ex-
pected number of active maintenance operations us-
ing the same type of resources cannot exceed the
available resources at any time. Since these con-
straints are relaxed in the solution methodology
described in Section III-B, their formulations are
shown here. Let (a; j) denote the jth overhaul op-
eration of asset a. For simplicity, let (a; 1) represent
the aggregate disassembly operation and (a; 2) the

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 55

aggregate assembly operation. The time horizon and
the number of type h resources available at time k
are denoted by K and Mkh. Let δajkh be a binary
variable defined to be one if the operation (a, j) is
active at time k on the resource type h and zero oth-
erwise. Similarly, let (a, i), Jai, and (a, i; j) denote
part i of asset a, the total number of repair opera-
tions, and the jth operation of (a, i)(j ∈ [1, Jai]). A
binary variable δaijkh is defined for the operation
(a, i; j). Using the notation, the resource capacity
constraints for the overhaul center (1) and for the
repair shop (2) are

E[
∑
aj

δajkh] ≤ Mkh, ∀k, and h (1)

E[
∑
aij

δaijkh] ≤ Mkh, ∀k, and h. (2)

The major constraints for the warehouse of rotable in-
ventory are inventory dynamics. The inventory dynamics
constraints describe that the number of parts of a rotable
type r in the warehouse at the current time slot k, denoted
by Ir(k), is equal to the available parts at the previous
slot plus the parts repaired in the previous slot and minus
the parts used for assembly starting at the current slot.
Let βr

aiJai k
be one if (a, i) is a rotable part of type r and

its last operation (a, i;Jai) completes at time k − 1 and
zero otherwise. Similarly, αr

a2k indicates the beginning of
the assembly operation (a; 2) if a rotable part of type r is
used in assembly, and is set to one if the operation (a; 2)
starts at time k and zero otherwise. The initial inventory
level of type r at the time slot 0 is given, denoted by
Ir0[= Ir(0)]. The inventory dynamics constraints for type
r can be formulated as follows (k ≥ 1):

Ir(k) = Ir(k − 1) +
∑
ai

βr
aiJai k

−
∑

a

αr
a2k

= Ir0 +
∑
ai

[
k∑

K=1

βr
aiJaiK

]
−

∑
a

[
k∑

K=1

αr
a2K

]
.

Since the increase and decrease of inventory level are af-
fected by rotable part repair and asset assembly that are
conducted by two different organizations, the nonnegative
inventory-level constraints are classified into interorgani-
zation constraints.

2) Interorganization constraints: The interorganization
precedence constraints, including disassembly/repair
precedence constraints and repair/assembly precedence
constraints, exist between the overhaul center and the re-
pair shop. Let baj , paj , caj , and saj represent the begin-
ning times, processing times, completion times, and the
timeout values of the disassembly/assembly operations.
Similarly, define baij , paij , caij , and saij for the repair
operations. The disassembly/repair constraints (3) reflect
that part repair cannot start until disassembly is done plus

a required timeout (i.e., sa1), while the repair/assembly
constraints (4) depict that assembly has to wait till serial-
number-specific (SNS) part repair is finished plus a re-
quired timeout. The nonnegative inventory-level con-
straints (5), existing between the warehouse of rotable
inventory and the overhaul center/repair shop, state that
the expected number of rotable parts in the inventory can-
not be below zero. If the initial inventory level of rotable
part type r is high, the corresponding constraints tend to
be violated less frequently during scheduling than the case
with low or zero initial inventory level

E[ba1 + pa1 + sa1 − bai1] ≤ 0, ∀(a, i) (3)

E[baiJai
+ paiJai

+ saiJai
− ba2] ≤ 0, ∀SNS(a, i) (4)

E[Ir(k)] ≥ 0, ∀r, k ∈ [1,K]. (5)

The objectives of the overall maintenance scheduling in-
clude minimizing the asset turnaround times, reducing the
work-in-process inventory, and keeping a low inventory
cost. These objectives are weighted together and modeled
by the following objective function:

J = E

[∑
a

(
waT 2

a + βaEa

)
+

∑
r

(
K∑

k=1

γrIr(k)

)]
. (6)

In the function, wa, βa, and γr represent the nonnegative
penalty weight for tardiness Ta, the nonnegative penalty
weight for earliness Ea, and the inventory holding cost
of rotable part type r, respectively. The scheduling prob-
lem is to select the best beginning times of disassem-
bly/assembly and repair operations to minimize the above
objective function (6) subject to intraorganization and
interorganization constraints.

B. Price-Based Scheduling Method

The price-based scheduling method [1] decomposes the
maintenance scheduling problem into a set of subprob-
lems and coordinates the subproblem solutions iteratively.
Since the expected resource capacity constraints (1), (2),
the interorganization precedence constraints (3), (4), and the
nonnegative inventory-level constraints (5) couple different as-
sets, parts, or organizations and are difficult to deal with, the
price-based scheduling method first employs a set of nonnega-
tive Lagrange multipliers (called “shadow prices”), specifically,
π (resource prices), η (precedence prices), and µ (inventory
prices) to relax these hard coupling constraints into soft penalty
terms such that the relaxed problem becomes unconstrained.
Given the current values of π, η, and µ, the relaxed problem is
to select the best beginning times of disassembly/assembly and
repair operations to minimize the summation of the original ob-
jective function and the penalty terms, as the following function

56 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

shows:

L̃ = J +
∑
kh

πkh

∑

aj

E(δajkh) − Mkh

+
∑
kh

πkh

∑

aij

E(δaijkh) − Mkh

−
∑
kr

µkrE(Ir(k)) +
∑
ai

ηai1E[ba1 + pa1 + sa1 − bai1]

+
∑
ai

ηaiJai
E[baiJai

+ paiJai
+ saiJai

− ba2].

The dual problem is to select the optimal set of prices to maxi-
mize the minimum of L̃. To solve the dual problem, an iterative
process is used. In each iteration, the relaxed problem is solved
given the current prices and the prices are then updated. In par-
ticular, since the relaxed problem L̃ is separable, it is classified
into asset-level/part-level subproblems, which can be solved in
polynomial time by using stochastic dynamic programming. The
subproblem solutions are coordinated through iterative updating
of the prices. As discussed in [1] and [21], because of the poten-
tially large number of coupling constraints of different natures,
the above solution methodology may not be effective to reduce
the constraint violation level, and a satisfactory solution may
not be obtained in a short time. To improve algorithm conver-
gence and solution quality, an augmented surrogate subgradient
solution methodology was presented in [1], which basically in-
corporates extra terms for penalizing violation of the coupling
constraints. Since the changes to the subproblems in the aug-
mented methodology are straightforward, they are omitted here.

IV. PRICE-BASED MULTIAGENT SCHEDULING

AND COORDINATION FRAMEWORK

In the view that the original implementation is central-
ized and the presented surrogate solution methodology does
not facilitate organization autonomy, the problem is decom-
posed into multiple organization-level scheduling problems
(i.e., overhaul/repair/warehouse-level) first. Because of com-
plexity, each organization-level problem is further decomposed
into smaller asset-level (corresponding to asset overhaul) and
part-level (corresponding to part repair) subproblems. The sub-
problem corresponding to asset a (7) is to select the best be-
ginning times of disassembly and assembly given the prices
to minimize La(π, η, µ), which measures the costs of disas-
sembling/assembling asset a, including the earliness and tar-
diness penalties, the resource usage cost, and other costs due
to relaxation of the corresponding precedence constraints and
inventory-level constraints

La(π, η, µ) = E

[
βaEa +

ca1∑
k=ba1

πkh +

(∑
i

ηai1

)
ba1

]

+
∑

i

[ηai1E(pa1 + sa1)]

+ E

[
waT 2

a +
ca2∑

k=ba2

πkh −
(∑

i

ηaiJai

)
ba2

+
∑

r

[
K∑

k=1

(µkr − γr)
k∑

K=1

αr
a2K

]]
. (7)

The subproblem corresponding to part (a, i) is to select
the best beginning times of the part repair operations given
the prices to minimize Lai(π, η, µ), including the resource us-
age cost of repairing the part and other costs due to relaxation
of the precedence constraints (and inventory-level constraints if
the part is rotable). Equations (8) and (9) are for the SNS parts
and rotable parts, respectively

Lai(π, η, µ)=E

∑

j

 caij∑

k=baij

πkh

−ηai1bai1+ηaiJai

baiJai

+ ηaiJai
E(paiJai

+ saiJai
) (8)

Lai(π, η, µ) = E

∑

j

 caij∑

k=baij

πkh

 − ηai1bai1

+
K∑

k=1

(γr − µkr)
k∑

K=1

βr
aiJaiK

 . (9)

Let L∗
a and L∗

ai be the minimal costs of (7) and of (8) and (9).
The organization-level problems (overhaul-level, repair-level,
and warehouse-level) are defined as

max qo(π, η, µ) = max

[∑
a

L∗
a(π, η, µ)−

∑
kh

πkhMkh

]
(10)

max qr(π, η, µ) = max

[∑
ai

L∗
ai(π, η, µ)−

∑
kh

πkhMkh

]

(11)

max qw(µ) = max

[∑
kr

Ir0(γr − µkr)

]
. (12)

On the basis of the above decomposition and autonomy of the
organizations, each organization is associated with a coordina-
tor agent, and each asset or part is represented by an agent.
Each agent has a behavior module, which basically solves its
corresponding subproblem. Specifically, the overhaul coordina-
tor, the repair coordinator, and the warehouse coordinator solve
the overhaul-level problem (10), the repair-level problem (11),
and the warehouse-level problem (12), respectively, while each
asset agent or part agent solves an asset-level subproblem (7)
or a part-level subproblem (8), (9). These scheduling agents do
not work in isolation, but need to coordinate with each other.
To provide support for possible interactions among the agents,
each agent contains the other three modules: a message receiv-
ing channel, a message sending channel, and an information
module. The receiving channel stores the incoming messages,
while the sending channel stores the outgoing messages. The
information module manages the local knowledge of the agent
as well as the information collected from the outside.

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 57

Before the above agents can be applied to solve the mainte-
nance scheduling problem in a distributed environment, several
coordination-related issues need to be addressed, specifically:
What information is managed by each agent and transmitted be-
tween the agents? How is asynchronous coordination achieved?
and What does the coordination language among the agents,
consist of? The basic idea is to let the individual agents manage
the related prices. For example, an overhaul (or a repair) coor-
dinator agent is in charge of updating the resource prices based
on the solutions obtained by the asset (or part) agents, while
a warehouse coordinator agent manages the inventory prices.
Given the new price information, each asset agent or part agent
will apply stochastic dynamic programming to solve the cor-
responding subproblem in polynomial time and return the best
beginning times to the coordinator agents. Since a coordinator
agent does not need to wait for the information from all the
relevant agents (based on the surrogate solution methodology),
price updating as well as subproblem solving can be overlapped.
This also explains why the agents can coordinate with each other
asynchronously most of the time. A challenging issue is who
will manage the precedence prices, which are accessed and up-
dated in both overhaul scheduling and repair scheduling. One
way is to let the overhaul coordinator and the repair coordinator
manage the prices. To avoid simultaneous updating of the prices
by them, a token-based heuristic can be used as in [7]. A draw-
back of this strategy is that the two coordinator agents may need
to exchange a lot of token messages during scheduling. Another
option is to let each asset agent as well as the associated part
agents use the token-based heuristic to manage the correspond-
ing precedence prices. This alternative is used in our framework
since it does not have the drawback.

Our agent negotiation and communication language is de-
fined to facilitate transmission of solution and price informa-
tion as well as coordination among the agents. It currently
consists of a set of message types, including resource multi-
plier message, inventory multiplier message, precedence multi-
plier message, subproblem solution message, and agent registra-
tion/deregistration message. The resource multiplier message,
containing the latest resource price information, is sent from
the overhaul/repair coordinator to an asset/part agent while the
inventory multiplier message, containing the latest rotable part
price information, is sent from a warehouse coordinator to an as-
set/part agent. The precedence multiplier message is exchanged
between an asset agent and a part agent. The agent registration
message is sent by an asset/part agent to register itself with a
coordinator agent, while the deregistration message is sent to
a coordinator agent when an asset/part agent notices that the
asset/part has been maintained.

Overall, our agent scheduling framework is distributed by de-
composing the original problem into organization-level schedul-
ing problems, which are further decomposed into smaller asset-
level and part-level subproblems, and implementing distributed
and asynchronous scheduling and coordination as described
above (and illustrated in Fig. 2). Each coordinator agent will
interact with the relevant asset and part agents to perform intraor-
ganization scheduling. The asset agents also interact with the
part agents for reducing the violation of precedence constraints

Fig. 2. Schematic of the price-based method. The role of the over-
haul/repair/warehouse coordinator is to solve the overhaul-level/repair-
level/warehouse-level scheduling problem, while the role of each asset/part
agent is to solve the corresponding asset-level/part-level problem.

gradually. All these agents together perform the optimization,
and they can be run on different computing resources. In the
experimental study, the timeliness and scalability of the agent
scheduling framework will be demonstrated by varying hetero-
geneity of the distributed environment and number of worn-out
assets processed over time.

In addition to the above-mentioned scheduling agents, other
types of agents can be important from a futuristic point of view.
In the future, assets and parts will have computing, communica-
tion, and sensing capabilities. It is envisioned that the associated
agents can directly run in the onboard processing units of assets
and parts to collect asset and part condition information in real
time, help improve scheduling, and monitor the execution of
maintenance operations. In particular, the onboard agents will
enable assets and parts to actively participate in the scheduling
process by suggesting what maintenance operations are needed
and exploring where and when to perform the operations. All
these agents can be in different status as time passes by. The
condition-information-collecting agents will be generally ac-
tive if possible. The maintenance monitoring agents may be
inactive before assets and parts are sent for maintenance, while
the scheduling agents may be inactive if no potential prob-
lem is identified and become active otherwise. Moreover, the
collecting and monitoring agents generally stay in the onboard
processing units of assets and parts, while the scheduling agents
may migrate from the assets and parts to the overhaul centers
and repair shops to explore where and when to perform the oper-
ations. After scheduling is done, they then migrate back to their
corresponding assets and parts. The agents with the ability of
migrating from one computing resource (e.g., the onboard pro-
cessing unit of an asset) to another resource (e.g., a computer
of an overhaul center) are called mobile agents. These func-
tionalities of agents are expected to be a key characteristic of
next-generation e-scheduling. To support such functionalities,
other message types such as inquiry need to be defined to extend
our agent communication language.

58 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

In the view that a large number of agents in a maintenance
network interact with each other for scheduling overhaul and
repair operations, the multiagent architecture should be robust
and scalable. Carolina [22], a Java-based distributed agent ex-
ecution environment, was chosen among several because of
two reasons. First, Carolina was developed with the goal of
robustness and scalability, and its performance has been sys-
tematically studied. In particular, a distributed directory ser-
vice was employed to avoid the risk of single-point failure and
deal with a large number of agents. In addition, an ANTS-
style approach for message forwarding and routing optimization
was used to ensure successful communications among mobile
agents. Second, we have been using Carolina for some time and
feel comfortable to implement the agent-scheduling framework
in Carolina. Like Jade (http://jade.tilab.com) as well as other
Java-based agent systems, Carolina employs the threading sup-
port of Java to achieve the autonomy of agents, provides a set
of services to be used by agents for accessing distributed re-
sources and interacting with other agents, and relies on Java’s
serialization/deserialization support for transmitting messages
and migrating objects (agents) through the network. A differ-
ence is that the message format in Jade conforms to the agent
communication language (ACL) of FIPA, while the format in
Carolina does not. To deploy our scheduling framework in a
distributed environment with multiple agent infrastructures, it
is necessary to implement the framework in an infrastructure
such as Jade or extend Carolina with some interoperable proto-
cols (e.g., ACL of FIPA). However, this issue is not addressed
here.

V. EXPERIMENTAL DESIGN

The goal of the experimental study is to answer the questions
posed earlier regarding the performance of the agent scheduling
framework in a distributed environment. Two hypotheses are
examined. Our first hypothesis is that the framework, built on
the price-based method, can obtain a high-quality solution in
a timely manner. The second hypothesis is that the framework
would be able to solve large-scale problems by scheduling
in a distributed and asynchronous fashion. In this section,
the experimental design is described in detail with the focus
on selecting factors that are key to answering our questions
and to validating the hypotheses. Other related issues are also
addressed, including performance measures, specification of
experiments, and testbed setup.

A. Performance Measures

For the ease of validating the hypotheses, the following per-
formance measures are considered. To reflect the different re-
quirements of high-priority assets and those of low-priority as-
sets (as described in Section V-B), the quality of a solution
is defined by three measures: mean turnaround time of high-
priority assets (HTAT), mean turnaround time of low-priority
assets (LTAT), and mean INVC. In addition to these three mea-
sures, another two measures of interest are the total scheduling
time (SCHT) for a given test case and the total number of prece-
dence messages that are transmitted between the asset agents

and the part agents in the case of using our agent schedul-
ing framework. The number of precedence messages reflects
the amount of interorganization coordination traffic between
overhaul scheduling and repair scheduling. Another reason for
counting the number of precedence messages only is that the
number of other types of messages is a constant, given the same
iterations (as the stopping criterion of scheduling) and the same-
scale test cases.

B. Factor Selection

To help answer the questions and validate the hypotheses, a
total of eight factors were selected.

1) Solution framework type (SolFrm): SolFrm is defined
for the purpose of checking whether the performance of
the agent scheduling framework can approach that of a
centralized implementation of the price-based scheduling
method.

2) Communication delay (CommuDelay) and Processor
Speed (ProcSpd): These two factors reflect heterogene-
ity in a distributed environment and may prevent the agent
scheduling framework from finding a high-quality solu-
tion in a short time interval (e.g., 5 min). To see how much
the framework is influenced under different communica-
tion delay and processor speed patterns, three levels are
defined for each factor to reflect three cases, specifically, a
homogeneous case, a less heterogeneous case, and a very
heterogeneous case.

a) Levels for communication delay: Since our experi-
ments are carried out in a local area network, which
generally has a small communication delay due to
small latency and large bandwidth, artificial delay
functions are applied to simulate the three cases of
communication delays. One is a small uniform delay
pattern (for homogeneous communication delay),
under which all the messages are delayed between
0 and 30 ms before being sent. The reason of using
a small uniform delay pattern is that, even in the
homogeneous case, the actual delay for a message
transmission varies in a small range. The second is a
large uniform delay pattern from 0.5 to 3 s (for very
heterogeneous communication delay). The last one
is a combination of the previous two, with 90% of the
messages being delayed slightly and 10% delayed
significantly.

b) Levels for processor speed: Two heterogeneous sys-
tems are considered. In one very heterogeneous
system, all the repair shops use different types of
workstations from those for the overhaul centers.
In the less-heterogeneous system, half of the repair
shops use different types of workstations while the
other half uses the same types of workstations as
the overhaul centers. As a comparison, a homoge-
neous system is also considered. In the study, three
types of workstations are used. Pentium IV 2-GHz
1-GRAM workstations form the homogeneous sys-
tem, and they are also utilized to schedule overhaul

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 59

operations in the heterogeneous systems (and one
of them is used to test centralized scheduling).
Pentium IV 2.6-GHz 512-MRAM and Pentium III
1-GHz 128-MRAM workstations are used together
to schedule repair operations in the heterogeneous
systems.

3) Number of assets: This factor reflects the problem scale,
and the agent scheduling framework scalability can be
shown by examining the results of scheduling different-
scale problems. This factor specifies the total number of
worn-out assets considered in a test case. While the exact
number of assets arriving over time may not be known
beforehand in practice, it can often be estimated. So, in
the experiments, it is assumed to be known. In addition, in
practice, some worn-out assets are considered to be more
important than others. As such, in the experiments, the
assets are classified into two categories, specifically, 30%
high-priority assets and 70% low-priority assets. Those
high-priority assets should be maintained as soon as pos-
sible without being delayed by maintenance of the low-
priority ones.

4) Initial inventory relative level (InitInv), holding cost (γr),
targeted resource utilization (ResUtil), and uncertainty
level (UncertL): These factors reflect the different condi-
tions arising in maintenance scheduling.

a) InitInv: This is defined to be a ratio of the initial
inventory level to the number of assets. The initial
inventory level Ir0 is proportional to the number of
assets, being equal to InitInv∗# of assets. A high
initial inventory relative level may improve mean
HTAT and LTAT as well as lead to a high inventory
cost. So it needs to be chosen suitably. For simplicity,
only one rotable part type is assumed here (note that,
in the case of multiple rotable part types, a different
initial inventory relative level may be specified for
each type).

b) γr: At each time slot t, the current inventory level
multiplied by γr is the inventory cost at t. The total
inventory cost is the summation of the inventory cost
at each time slot, and mean INVC is the total cost di-
vided by the total time. While a high initial inventory
relative level may shorten mean HTAT and LTAT, it
may increase mean INVC because the current in-
ventory level at any time slot t is more likely to be
high.

c) ResUtil: This factor is defined to be a ratio of the
total busy time to the total available time of the re-
sources of a maintenance resource type. A resource
is busy at time slot t if it is conducting a main-
tenance operation at that time. This factor is used
to simulate the cases with sufficient or insufficient
maintenance resources. Specifically, given a targeted
level of resource utilization, the estimated process-
ing requirements of maintenance operations, and the
available time per resource, the numbers of available
resources in the overhaul centers and repair shops
can be decided.

TABLE I
FACTORS AND THEIR LEVELS

TABLE II
ORTHOGONAL ARRAY L9, CONSISTING OF FOUR

COLUMNS AND NINE ROWS

d) UncertL: This factor captures the uncertainties
involved in scheduling, including uncertain asset
arrivals and operation processing times. Here, it
denotes the standard deviation of each uncertain
variable. Each variable is assumed to take three val-
ues with equal probability if UncertL is nonzero.

For each of the factors, since the framework may behave dif-
ferently under its different levels, its impact is studied. Further-
more, these factors together may have different effects on sys-
tem performance from the impact of each individual one. In this
study, the interactions between CommuDelay and ProcSpd are
examined to determine the timeliness of agent-based schedul-
ing. In addition, the interactions between InitInv and ResUtil are
studied because both factors are important for reducing mean
asset turnaround time.

Except for the solution framework type, which has only two
levels, every factor has three levels because any interesting
trends can be seen only by using more than two levels (as shown
in Table I).

C. Specification of Experiments and Testbed Setup

Even with the above eight factors selected, it is still too costly
to measure the impact of all level combinations of these fac-
tors (2 × 37 combinations). So, a subset of level combinations
has to be considered, which can be decided by employing or-
thogonal arrays [23]. An orthogonal array is a two-dimensional
matrix with orthogonality satisfied. The rows are called cells,
representing experiments to be performed, while the columns
correspond to the different factors whose effects will be stud-
ied. An orthogonal array of strength g(g ≥ 2) means that, for
any g columns, all level combinations of factors represented by
the g columns occur an equal number of times. This balancing
property is called orthogonality. As an example, the standard or-
thogonal array L9 [23, p. 287] has nine cells and four columns

60 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

(representing four three-level factors at most), as shown in
Table II.

To measure the main effect of each of the eight factors
on system performance, the standard orthogonal array L18

[23, p. 291] is applied. Orthogonal array L18 can handle seven
three-level factors and one two-level factor. Furthermore, to
identify the possible interactions between CommuDelay and
ProcSpd as well as between InitInv and ResUtil in using the
agent scheduling framework, another orthogonal array L9 is ap-
plied. In this case, the middle levels of the rest five factors are
always used. Overall, one set of test cases is generated based on
L18 and two other sets of test cases based on L9.

In addition to the above eight factors, other factors, such
as the number of operations per part repair and the operation
processing times, need to be specified as well. Our rule for set-
ting these factors is based on simplicity and consistency so that
their effects can be minimized. Specifically, the high-priority
assets are assigned a tardiness weight of 10.0, and the low-
priority ones are assigned a weight of 1.0. Each asset contains
one SNS part and one rotable part. Asset overhaul has one dis-
assembly operation and one assembly operation, and part repair
consists of two operations. Each type of the operations (e.g.,
disassembly, first operation of rotable repair, etc.) is conducted
by a different maintenance resource type. The expected process-
ing time is set to 4 for rotable part repair operations and 3 for
all the other operations. Using these settings, it is clear that the
maintenance of an asset (i.e., disassembly plus assembly plus
two repair operations on the SNS part) can be done in 12 time
slots on average if there are sufficient maintenance resources
and rotable parts. However, it is often the case that insufficient
maintenance resources are available. So the due date should not
be set too tight. Here, it is set to the expected asset arrival time
plus 17 (22) for a high-priority (low-priority) asset. The main-
tenance network consists of one overhaul center and two repair
shops, one in charge of the SNS parts and the other responsible
for the rotable parts. All these values are kept the same in the
test cases to minimize the effects of the associated factors.

To conduct the experiment, a simulation control module is
implemented at the top of the agent scheduling framework.
It loads the test cases into the system one at a time and calls
agent-based scheduling or centralized scheduling on the sce-
nario captured by each test case. Before agent-based scheduling
is called, all the needed scheduling agents are created first on
the agent servers running in the homogeneous or heterogeneous
system, as described in Section V-B. Since two single-processor
computers are used to perform scheduling of the overhaul center
as well as each repair shop, the corresponding coordinator agent
runs on one computer, while the related asset agents or part
agents are evenly dispatched to the two assigned computers.
To handle dynamic asset arrivals, the control module calls
rescheduling at a specified interval. Specifically, the simulation
horizon is set long enough for maintaining all the assets, while
for (re)scheduling, a shorter horizon is used to restrict the
attention to the assets that will arrive in the near future as
well as those that have arrived but not finished maintenance.
Upon the completion of (re)scheduling, the scheduling policy
obtained is recorded and used to guide the arrangement of

TABLE III
RESULTING p-VALUES OF ONE-WAY ANOVA ANALYSIS

TABLE IV
RESULTING p-VALUES OF TWO-WAY ANOVA ANALYSIS

maintenance operations. To make measures meaningful, the
behavior of the system in the initial warm-up phase and final
phase is intentionally ignored. In particular, only the assets
completed during a chosen interval are counted, and the interval
starts right after the first 20% of assets finish maintenance and
terminates when 70% of assets are maintained.

To facilitate the study, all the test cases are generated of-
fline, each of which contains complete information of what
maintenance resources are there in each organization, when the
worn-out assets arrive, what operations need to be carried out,
and so on. Such complete information, however, is not used
all at once during (re)scheduling. As mentioned above, only
the information that is considered currently available is used
in each scheduling period. Hence, our scheduling framework is
dynamic.

VI. EXPERIMENTAL RESULTS

Analysis of variance (ANOVA) [24] is a statistical technique
that measures the relative effects of the different factors on sys-
tem performance. In this study, one-way and two-way ANOVAs
are applied to analyze the main effects of the individual factors
(see Table III) and the possible interactions between commu-
nication delays and processor speeds as well as between in-
ventory levels and resource utilizations (see Table IV), respec-
tively. From the results and analyses, it is concluded that the
agent scheduling framework can approach similar performance
as a centralized implementation of the price-based scheduling
method in terms of the solution-quality-related measures. Fur-
thermore, the framework can schedule in a timely manner in
that its SCHT is within 5 min (from about 60 to 270 s) for
most test cases. Only for the 400-asset test cases is the time
over 5 min, about 330 s, under large uniform communication
delays. As a comparison, the SCHT of the centralized schedul-
ing is less than 1 min. This is because Java is slow in message
transmission. When new techniques become available, message
transmission time may be reduced greatly. Overall, the agent

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 61

Fig. 3. Relationship between initial inventory relative level (InitInv) and mean
asset turnaround time.

scheduling framework is able to solve the large-scale test cases.
These results basically validate our hypotheses and answer the
questions posed earlier.

In the following, the main effects of the individual factors
are presented first. The interaction analysis follows. In all the
analyses, the significance level is set to 0.05, and the marginal
significance level is set to 0.10.

A. Main Effects of the Individual Factors

The results from the test cases and the following anal-
ysis show that the high-priority assets generally have short
turnaround times with small variances, while the low-priority
assets tend to be delayed and have long turnaround times
under insufficient maintenance resources. Furthermore, hav-
ing a nonempty initial inventory can shorten low-priority as-
set turnaround times as well as reduce the effect of un-
certainties. However, having a high inventory may not be
necessary.

1) Initial Inventory Relative Level: As shown in Table III,
the initial inventory relative level (InitInv) significantly affects
mean LTAT and mean INVC, but its impact on mean HTAT is
not significant. The reason is that parts, especially rotable parts,
cannot be repaired in a timely fashion such that assembly of
low-priority assets is delayed and a nonempty rotable inventory
will be helpful. In particular, as shown in Fig. 3, by using 5%
InitInv, LTAT becomes 14.9, which is about 25% less than the
value (i.e., 20.0) with empty initial inventory. It decreases to
13.1 if InitInv is set to 10%. Since the benefit of using higher
InitInv like 10% is diminishing and LTAT being 14.9 is already
much better than the desired LTAT, it seems that 5% InitInv is a
good choice. Its insignificant impact on HTAT is mainly because
HTAT is already low, close to the minimal value of finishing the
whole maintenance process of a worn-out asset. Our explanation
of its significant impact on INVC is that, under a high-inventory
relative level, it is more likely that some rotable parts are always
available in the inventory, as reflected in Fig. 4. From this
point of view, it is not desirable to use a high InitInv relative
level.

Fig. 4 Nonlinear relationship between initial inventory relative level (InitInv)
and mean INVC.

Fig. 5. Relationship between resource utilization (ResUtil) and mean asset
turnaround time.

2) Targeted Resource Utilization: As shown in Table III,
the impact of targeted resource utilization (ResUtil) on mean
LTAT is significant, while its impact on mean HTAT is not.
On the one hand, maintenance of low-priority assets may be
delayed under high resource utilization because the needed
parts cannot be repaired in time, as shown in Fig. 5. One in-
teresting trend is that LTAT slightly increases from 13.4 to
15.3 when the ratio changes from 60% to 70%. But, it be-
comes 19.3 with an 80% ratio. With such a nonlinear relation-
ship, it is expected that a ratio higher than 80% will lead to
a much higher LTAT. On the other hand, high-priority assets
are maintained in a timely fashion even under high resource
utilization. As a result, the impact of this factor on HTAT is
insignificant.

3) Uncertainty Level: The uncertainty level marginally af-
fects mean HTAT, as shown in Table III. From Table V, it is
clear that a high uncertainty level does lead to the increase of
both HTAT and LTAT. The variance of HTAT is small due to
the timely maintenance of high-priority assets such that the in-
creasing trend of HTAT becomes marginally significant. On the

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

TABLE V
MEAN HTAT AND LTAT AND THEIR

STANDARD DEVIATION VALUES UNDER

DIFFERENT UNCERTAINTY LEVELS

contrary, the variance of LTAT is much larger. Our explanation
is that under high resource utilization, LTAT tends to increase
quickly with the increase of uncertainty level if InitInv is zero,
but a nonzero InitInv may reduce the effect of the uncertainty
level. When these different scenarios are grouped together, the
variance of LTAT is big, which makes the increasing trend in-
significant.

The impact of solution framework type, problem scale, pro-
cessor speed, and communication delay on mean HTAT and
of LTAT and mean INVC is insignificant. These results show
that the agent scheduling framework as well as the price-based
scheduling method performs efficiently under different condi-
tions in the homogeneous as well as heterogeneous environ-
ments. In addition, by scheduling in a distributed and asyn-
chronous fashion, the framework is scalable. What we did not
expect is that the holding cost did not have significant impact.
This is possibly due to the quadratic tardiness penalty term in
the objective function (6) which dominates the linear inventory
cost term.

B. Interactions of Pairs of Factors

By using two-way ANOVA, it is shown that the inventory rel-
ative levels and resource utilizations have significant interaction
effects on mean LTAT and mean INVC, while the interaction
effects between communication delays and processor speeds on
these solution-quality-related measures are insignificant.

1) Communication Delays and Processor Speeds: As shown
in Table IV, there is a significant interaction effect between
communication delays and processor speeds on the number of
transmitted precedence messages (MSGNs). The reason is that
under small communication delays, the asset agents and the part
agents in the homogeneous system can progress approximately
at the same pace in solving their subproblems, while in the two
heterogeneous systems, the part agents slightly lag behind the
asset agents. As a result, the asset agents and the part agents in
the homogeneous system can transmit more precedence mes-
sages on average, as shown in Fig. 6. However, under large
communication delays, the time for solving a subproblem in
one iteration becomes negligible compared to the time waiting
for messages between two iterations. So the systems make no
impact since they all transmit similar amounts of messages. In
the view that the MSGN somehow reflects the amount of in-
terorganization coordination traffic between overhaul schedul-
ing and repair scheduling, given a significant impact of Com-
muDelay and ProcSpd on MSGN, it seems that at least one of the
three solution-quality-related measures should be influenced.
The analysis, however, shows that the impact is insignificant.

Fig. 6. MSGN under different processor speeds (ProcSpd) and communication
delays (CommuDelay).

Fig. 7. SCHT under different processor speeds (ProcSpd) and communication
delays (CommuDelay).

Our explanation is that the iterative updating and exchanging
of resource prices and inventory prices also indirectly achieve
interorganization coordination.

Table IV shows that the interaction effect on the SCHT is
insignificant. This can be explained by observing the SCHT dif-
ference between the centralized method and our agent schedul-
ing framework. The centralized method can finish in about 17 s,
while the agent scheduling framework has to spend about 130 s
even under low communication delays. As mentioned earlier,
this is because Java is slow in message transmission com-
pared to other languages like C. Hence, our agent scheduling
framework spends more time on communication than compu-
tation, and different processor speeds will not lead to large
differences on SCHT, as shown in Fig. 7. Another reason
is that our agent scheduling framework schedules and coor-
dinates in an asynchronous fashion. Although the individual
part agents in the heterogeneous systems may take more time
in solving their problems, the overall SCHT does not change
much.

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 63

Fig. 8. Mean LTAT under different resource utilizations (ResUtil) and initial
inventory relative levels (InitInv).

Fig. 9. Mean INVC under different resource utilizations (ResUtil) and initial
inventory relative levels (InitInv).

2) Initial Inventory Relative Levels and Targeted Resource
Utilizations: Their interaction effects on mean LTAT and mean
INVC are significant. This is because LTAT increases quickly
with the increase of resource utilization if the initial inventory
relative level is zero and the degree of increase is reduced under
nonzero inventory relative level, as shown in Fig. 8. Further-
more, under low resource utilization, a 5% inventory relative
level may be sufficient for achieving desired turnaround time
for most low-priority assets, while under high resource utiliza-
tion, such a level may not be enough. Similarly, Fig. 9 shows
that, under low resource utilization, mean INVC becomes high
with the increase of inventory relative level. Our explanation
is that rotable inventory always has extra rotable parts over the
time. While under high resource utilization, the rotable parts are
consumed quickly even with a high inventory relative level.

As explained above, mean HTAT is already low. From Fig. 10,
it can be seen that the HTAT increases (or decreases) slightly
with the increase of resource utilization (or the increase of in-

Fig. 10. Mean HTAT under different resource utilizations (ResUtil) and initial
inventory relative levels (InitInv).

TABLE VI
COMPARISON BETWEEN THE AGENT-BASED AND THE CENTRALIZED MODELS

ventory level). As a result, the trend by varying initial inventory
relative levels or resource utilizations is similar for different re-
source utilizations or different initial inventory relative levels.
The reason that HTAT does not decrease when the initial in-
ventory relative level increases from 5% to 10% in the case of
ResUtil being 60% is that it has already reached the minimal
expected value. Its increase from 12.00 to 12.02 is insignificant
and can be contributed to sampling error in generating test cases.

Table IV also shows that these two factors have a sig-
nificant interaction impact on the MSGN and a marginally
significant impact on SCHT. The reason is that MSGN and
SCHT are approximately proportional to the total number
of rescheduling times for each test case and the number of
rescheduling may be less for a case with nonzero inventory
relative level and/or low resource utilization than that of an-
other case with zero inventory relative level and/or high resource
utilization.

C. Summary of Results

In this section, the main effects of the individual factors as
well as the interactions of pairs of factors are analyzed, as
summarized in Table VI. From the results and analyses, our
hypotheses as stated in the beginning of Section V are sup-
ported, and the questions are positively answered. Specifically,

64 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

the price-based agent scheduling and coordination framework
can obtain a high-quality solution under different conditions
in a timely manner. On the one hand, the framework achieves
the same level of performance as a centralized implementation
of the price-based scheduling method in terms of the solution-
quality-related measures. On the other hand, heterogeneity in a
distributed environment does not prevent the framework from
performing effectively. In addition, the results and analyses re-
flect that high-priority assets are maintained in time while many
low-priority assets are delayed under high resource utilization
because of the delay of repairing parts, especially rotable parts.
That is why a nonzero initial inventory relative level may lead
to shorter turnaround times for low-priority assets. These rela-
tions can provide organizations with guidance on setting up a
suitable amount of resources and initial inventory relative level.
Since these factors, such as resource utilization and heterogene-
ity, are not restricted to the maintenance scheduling problem
only, the results may provide insights for other multiorganiza-
tion scheduling problems.

VII. CONCLUSION

In this paper, a price-based multiagent scheduling and coor-
dination framework for maintenance networks is explored, and
several key factors that may affect the performance of the frame-
work are identified and their effects experimentally studied.
Two orthogonal arrays are applied to systematically conduct the
experiments and reduce the total experimental effort. The results
validate our hypotheses and demonstrate that our framework
overcomes the major difficulties and could be a first step toward
the next generation of e-scheduling for maintenance networks.

The current model incorporates a number of simplifying as-
sumptions. To deploy it, the activities of other service providers,
such as ordering and production planning of part distributors
and spare part manufacturers, need to be modeled. In addition,
rather than giving the information to the agents, it is better for
the agents to retrieve the information automatically and up-
date their knowledge over time. To obtain faster convergence,
intraorganization scheduling as well as interorganization coor-
dination needs to be further improved. With the advancement of
computing, communication, and sensing capabilities of assets
and parts, it is important to explore how to monitor asset/part
conditions in real time and improve scheduling by using mobile
software agents. Finally, the issues related with security and
fault tolerance should be addressed.

ACKNOWLEDGMENT

The authors would like to thank D. Yu for her helpful dis-
cussions and the anonymous reviewers who helped to signifi-
cantly improve this paper. Earlier preliminary work was reported
in [25] and [26].

REFERENCES

[1] P. B. Luh, D. Yu, S. Soorapanth, A. I. Khibnik, and R. Rajamani, “A
Lagrangian relaxation based approach to schedule asset overhaul and
repair services,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 2, pp. 145–157,
Apr. 2005.

[2] V. Guide, Jr., M. Kraus, and R. Srivastava, “Scheduling policies for re-
manufacturing,” Int. J. Prod. Econ., vol. 48, pp. 187–204, 1997.

[3] V. Guide, Jr., V. Jayaraman, and R. Srivastava, “Production planning and
control for remanufacturing: A state-of-the-art survey,” Robot. Comput.
Integr. Manuf., vol. 15, pp. 221–230, 1999.

[4] V. Guide, Jr. and R. Srivastava, “Inventory buffers in recoverable manu-
facturing,” J. Oper. Manage., vol. 16, pp. 551–568, 1998.

[5] R. Pool, “If it ain’t broke, fix it,” Technol. Rev., vol. 104, no. 7, p. 64, Sep.
2001.

[6] M. Koc and J. Lee, “System framework for next-generation e-maintenance
systems,” Trans. Chin. Mech. Eng., vol. 12, no. 5, 2001.

[7] P. B. Luh, M. Ni, H. Chen, and L. S. Thakur, “Price-based approach for
activity coordination in a supply network,” IEEE Trans. Robot. Autom.,
vol. 19, no. 2, pp. 335–346, Apr. 2003.

[8] N. M. Sadeh, D. W. Hildum, D. Kjenstad, and A. Tseng, “MASCOT: An
agent-based architecture for dynamic supply chain creation and coordi-
nation in the internet economy,” Prod. Planning Control, vol. 12, no. 3,
2001.

[9] N. Zarour, M. Boufaida, L. Seinturier, and P. Estraillier, “Supporting
virtual enterprise systems using agent coordination,” Knowl. Inf. Syst.,
vol. 8, no. 3, pp. 330–349, Sep. 2005.

[10] H. Pham, “Software agents for internet-based systems and their design,” in
Intelligent Agents and Their Applications, L. Jain, Z. Chen, and N. Ichalka-
ranje, Eds. Heidelberg, Germany: Physica-Verlag, 2002, pp. 109–
154.

[11] E. Santos, Jr., F. Zhang, and P. B. Luh, “Intra-organizational logistics
management through multi-agent systems,” Electron. Commerce Res.,
vol. 3, no. 3–4, pp. 337–364, 2003.

[12] R. Lee and J. Liu, “iJADE WeatherMAN: A weather forecasting system
using intelligent multiagent-based fuzzy neuro network,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 3, pp. 369–377, May
2004.

[13] I. Satoh, “Building reusable mobile agents for network management,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 33, no. 3, pp. 350–
357, May 2003.

[14] E. Oliveira, K. Fischer, and O. Stepankova, “Multi-agent systems: Which
research for which applications,” Robot. Autonom. Syst., vol. 27, pp. 91–
106, 1999.

[15] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. 29,
no. 12, pp. 1104–1113, Dec. 1980.

[16] N. M. Sadeh, D. W. Hildum, and D. Kjenstad, “Agent-based e-supply
chain decision support,” J. Org. Comput. Electron. Commerce, vol. 13,
no. 3, pp. 225–241, 2003.

[17] K. Decker and V. Lesser, “Designing a family of coordination algorithms,”
in Proc. 1st Int. Conf. Multi-Agent Systems (ICMAS’95), San Francisco,
CA, 1995, pp. 73–80.

[18] P. Stone and M. Veloso, “Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork,”
Artif. Intell., vol. 110, no. 2, pp. 241–273, 1999.

[19] O. Shehory, G. Sukthankar, and K. Sycara, “Agent aided aircraft main-
tenance,” presented at the Conf. Autonomous Agents, Seattle, WA,
1999.

[20] X. Xu and M. Kezunovic, “Mobile agent software applied in maintenance
scheduling,” presented at the 2001 North American Power Symp., College
Station, TX, 2001.

[21] D. Yu, P. B. Luh, and S. Soorapanth, “A new Lagrangian relaxation based
method to improve schedule quality,” presented at the 2003 IEEE/RSJ Int.
Conf. Intell. Robots Syst., Las Vegas, NV, 2003.

[22] M. G. Saba and E. Santos, Jr., “The multi-agent distributed goal satisfac-
tion system,” in Proc. Int. ICSC Symp. Multi-Agents and Mobile Agents
in Virtual Org. and E-Commerce, 2000, pp. 389–394.

[23] M. S. Phadke, Quality Engineering Using Robust Design. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[24] D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Ap-
plied Regression Analysis and Other Multivariable Methods. Duxbury,
1997.

[25] F. Zhang, E. Santos, Jr., and P. B. Luh, “Mobile multi-agent-based schedul-
ing and coordination of maintenance networks,” in Proc. Int. Conf. Parallel
and Distributed Processing Techniques and Applications, Las Vegas, NV,
2003, pp. 279–285.

[26] F. Zhang, P. B. Luh, and E. Santos, Jr., “Performance study of multi-agent
scheduling and coordination framework for maintenance networks,” in
Proc. 2004 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS
2004), Sendai, Japan, 2004, pp. 2390–2395.

ZHANG et al.: PERFORMANCE STUDY ON A MULTIAGENT E-SCHEDULING AND COORDINATION FRAMEWORK 65

Feng Zhang received the B.S. degree in computer
science and technology and the M.S. degree in com-
puter applications from Tsinghua University, Beijing,
China, in 1993 and 1995, respectively. He is cur-
rently pursuing the Ph.D. degree at the University of
Connecticut, Storrs.

From 1995 to 1999, he was a Software Engi-
neer with the Tsinghua Unispendour Group, Beijing,
working on research and development of computer-
aided-design software. His research interests include
multiagent scheduling and coordination, load balanc-

ing, cooperative algorithm portfolios, and modeling of restricted processor
sharing.

Eugene Santos, Jr. (M’93–SM’04) received the B.S.
degree in mathematics and computer science and
the M.S. degree in mathematics (specializing in nu-
merical analysis) from Youngstown State University,
Youngstown, OH, in 1985 and 1986, respectively,
and the Sc.M. and Ph.D. degrees in computer science
from Brown University, Providence, RI, in 1988 and
1992, respectively.

He is currently a Professor of engineering at the
Thayer School of Engineering, Dartmouth College,
Hanover, NH, and Director of the Distributed Infor-

mation and Intelligence Analysis Group (DI2AG). Previously, he was a faculty
member at the Air Force Institute of Technology, Wright-Patterson AFB, and
the University of Connecticut, Storrs. He has over 130 refereed technical pub-
lications and specializes in modern statistical and probabilistic methods with
applications to intelligent systems, uncertain reasoning, and decision science.
Most recently, he has pioneered new research on user and adversarial behavioral
modeling. He is an Associate Editor for the International Journal of Image and
Graphics.

Dr. Santos is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS. He has chaired or served on numerous major IEEE
conferences and professional society meetings.

Peter B. Luh (S’76–M’80–SM’91–F’95) received
the B.S. degree in electrical engineering from the
National Taiwan University, Taipei, Taiwan, R.O.C.,
in 1973, the M.S. degree in aeronautics and astro-
nautics engineering from the Massachusetts Institute
of Technology, Cambridge, in 1977, and the Ph.D.
degree in applied mathematics from Harvard Univer-
sity, Cambridge, in 1980.

Since 1980, he has been with the University of
Connecticut, Storrs, and currently is the SNET Pro-
fessor of communications and information technolo-

gies in the Department of Electrical and Computer Engineering. He is also a
Visiting Professor at the Center for Intelligent and Networked Systems, Depart-
ment of Automation, Tsinghua University, Beijing, China. He is interested in
planning, scheduling, and coordination of design, manufacturing, supply chain,
and other activities; configuration and operation of building elevator and HVAC
systems for normal and emergency conditions; schedule, auction, portfolio op-
timization, and load/price forecasting for power systems; and decision making
under uncertain, fuzzy, or distributed environments. He is an Associate Editor of
the IIE Transactions on Design and Manufacturing and Discrete Event Dynamic
Systems.

Dr. Luh is the founding Editor-in-Chief of the IEEE TRANSACTIONS ON

AUTOMATION SCIENCE AND ENGINEERING. From 1999 to 2003, he was the
Editor-in-Chief of the IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION.

